HW 2: Electrostatics

Example 2.1 Find the electric field a distance z above the midpoint of a straight-line segment of length $2 L$, which carries a uniform line charge λ (Fig. 2.6).

Figure 2.6

Problem 2.4 Find the electric field a distance z above the center of a square loop (side a) carrying uniform line charge λ (Fig. 2.8). [Hint: Use the result of Ex. 2.1.]

Problem 2.5 Find the electric field a distance z above the center of a circular loop of radius r (Fig. 2.9), which carries a uniform line charge λ.

Problem 2.6 Find the electric field a distance z above the center of a flat circular disk of radius R (Fig. 2.10), which carries a uniform surface charge σ. What does your formula give in the limit $R \rightarrow \infty$? Also check the case $z \gg R$.

Figure 2.7

Figure 2.8

Figure 2.9

Problem 2.6 Find the electric field a distance z above the center of a flat circular disk of radius R (Fig. 2.10), which carries a uniform surface charge σ. What does your formula give in the limit $R \rightarrow \infty$? Also check the case $z \gg R$.

Problem 2.7 Find the electric field a distance z from the center of a spherical surface of radius R (Fig. 2.11), which carries a uniform charge density σ. Treat the case $z<R$ (inside) as well as $z>R$ (outside). Express your answers in terms of the total charge q on the sphere. [Hint: Use the law of cosines to write τ in terms of R and θ. Be sure to take the positive square root: $\sqrt{R^{2}+z^{2}-2 R z}=(R-z)$ if $R>z$, but it's $(z-R)$ if $R<z$.]

Problem 2.8 Use your result in Prob. 2.7 to find the field inside and outside a sphere of radius R, which carries a uniform volume charge density ρ. Express your answers in terms of the total charge of the sphere, q. Draw a graph of $|\mathbf{E}|$ as a function of the distance from the center.

Figure 2.10

Figure 2.11

Problem 2.9 Suppose the electric field in some region is found to be $\mathbf{E}=k r^{3} \hat{\mathbf{r}}$, in spherical coordinates (k is some constant).
(a) Find the charge density ρ.
(b) Find the total charge contained in a sphere of radius R, centered at the origin. (Do it two different ways.)

Problem 2.15 A hollow spherical shell carries charge density

$$
\rho=\frac{k}{r^{2}}
$$

in the region $a \leq r \leq b$ (Fig. 2.25). Find the electric field in the three regions: (i) $r<a$, (ii) $a<r<b$, (iii) $r>b$. Plot $|\mathbf{E}|$ as a function of r.

